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Outline of this Talk

New torsional balance apparatus at Yale

  Electrostatic calibrations for Casimir measurements 
 Contact potential differences - Varying minimizing potential

 Surface potential patches and electrostatic force residuals

Casimir force between Ge plates

  Theory - several theoretical models

  Experiment - evidence of electric residual forces and Casimir

Casimir force between Au plates
  Preliminary results - Plasma or Drude? 



New Casimir Apparatus at Yale



Torsional Pendulum Set-up

Sphere-plane geometry

The correction voltage is the physical observable, and it is 
proportional to the force between the Casimir plates

An imbalance in capacitance is amplified and sent to a phase 
sensitive detector (PSD), which generates error signals.

SPID(d, Va)
A proportional integro-differential (PID) controller provides a 
feedback correction voltage                    to the compensator 
plates, restoring equilibrium.

Upgrade of Lamoreaux’s 1997 experiment

• shorter wire length (                   ) for reduced tilt

• improved vacuum (                               )

• improved vibration oscillation 
• Motion XYZ stage with 8 nm resolution

• NdFeB magnet at bottom to damp swinging modes of 
the pendulum at natural frequency of 3 Hz



Electrostatic Calibrations

Kim, Sushkov, DD, Lamoreaux, PRL 103, 060401 (2009)



Typical Casimir Measurement

force-free component of 
signal at large separations

electrostatic signal in 
response to an applied 
external voltage

residual signal due to 
distance-dependent 
forces, e.g. Casimir

force-voltage conversion factor

This signal is minimized (           ) when               , and the electrostatic minimizing 
potential       is then defined to be the contact potential between the plates.

Sa = 0 Va = Vm

Vm

The electrostatic signal between the spherical lens and the plate, in PFA             , is



Typical Casimir Measurement

force-free component of 
signal at large separations

electrostatic signal in 
response to an applied 
external voltage

residual signal due to 
distance-dependent 
forces, e.g. Casimir

force-voltage conversion factor

This signal is minimized (           ) when               , and the electrostatic minimizing 
potential       is then defined to be the contact potential between the plates.

Sa = 0 Va = Vm

Vm

Naive picture 

Va = VmCounterbias              fixed at large separations, 
and assumed to be distance-independent

electrostatic force 
is supposedly 

nullified

The electrostatic signal between the spherical lens and the plate, in PFA             , is



“Parabola” measurements

A range of plate voltages      is applied, and 
at a given nominal absolute distance the 
response is fitted to a parabola

Va

Calibration routine (Iannuzzi et al, PNAS 04) 

Fitting parameters

This procedure is repeated at decremental distances, from150 um down to 500 nm, 
completing a single experimental run. 

Note: The maximum force gradient for feedback system stability is 5 nm/um, limiting 
the minimum distance to 500 nm.

voltage-force calibration factor + absolute distance

distance-dependent minimizing potential

force residuals: electrostatic + Casimir + non-Newtonian gravity + ....



Curvature Parameter

Typical uncertainty in position is 
about 10% at a given distance

 Force-voltage calibration factor

 Sphere-plane absolute distance

χ2 = 1.2

Some further details:

• Average 

• Drift of about 5 um in 3 weeks 

• Single sweep suffers about 
20nm drift (less than 5% at the 
closest approach of 500nm)

From the curvature of the different parabolas one obtains k(d)

k(d)



Varying Minimizing Potential
Our Ge data shows a distance-dependent 
minimizing potential, of the order of 6 mV 
over 100 um.

Therefore, a fixed counterbias would be incorrect!



Varying Minimizing Potential
Our Ge data shows a distance-dependent 
minimizing potential, of the order of 6 mV 
over 100 um.

Therefore, a fixed counterbias would be incorrect!

Similar behavior has been observed in a number of experiments with Au plates (both with 
macro and micro spheres), including

Iannuzzi’s groupOnofrio’s group Capasso’s group Chevrier’s group

(See Kim, Brown-Hayes, DD, Brownell, Onofrio, PRA 08, 09)



Force Residuals

Residuals from Coulomb force 
obtained from the value of the 
PID signal at the minima of 
each parabola, 

In our experiment, these force residuals are too large to be explained just 
by the Casimir-Lifshitz force between the Ge plates.

In fact, the experimental data shows a         force residual at distances
             , where the Casimir force should be negligible.

1/d
d > 5µm



Force Residuals

Residuals from Coulomb force 
obtained from the value of the 
PID signal at the minima of 
each parabola, 

In our experiment, these force residuals are too large to be explained just 
by the Casimir-Lifshitz force between the Ge plates.

In fact, the experimental data shows a         force residual at distances
             , where the Casimir force should be negligible.

1/d
d > 5µm

What is the origin of the additional force residual?

What is the origin of the varying minimizing potential? 



Electrostatic Patches & Residuals

Kim, Sushkov, DD, Lamoreaux, arXiv:0905.3421



Surface Potentials & 
The surface of a conductor is an equipotential only for a perfectly clean 
surface of a homogeneous system cut along one of its crystalline planes.

It is NOT the case for any real material. • oxide layers in “dirt” films
• local variations in the crystalline structure
• different work functions

R

V0Minimized force at a fixed distance determines 
the minimizing potential 

 Surface patches DO NOT interfere 
with distance calibration!

and

Vm(d)

Electrostatic force (in PFA,            ):



& Residual Elec. Force. IVm(d)

Force on lower plate:

(      is varied,      a fixed property of the plates)V0 Vc

When force is minimized, one gets a varying minimizing potential and a varying 
electrostatic residual force. 

In reality, measurements can determine            up to an overall constant:

A toy model illustrating the mechanism 
for the generation of            and   



& Residual Elec. Force. IIVm(d)

Minima of parabolas DO NOT nullify all possible 
electrostatic forces between plates!

Sphere-plane case:

Dividing the sphere into infinitesimal areas, each with a random potential, and integrating 
over the surface to get the net residual force (as in PFA), we get 

Important message from this analysis:



Electrostatic Patch Effects. I
The patch effect is a possible systematic limitation to Casimir force 
measurements (Speake and Trenkel, PRL 03). 

 We have derived a simpler formulation of the problem (arXiv:0905.3421)

Plane-plane geometry:

Electrostatic energy:



Electrostatic Patch Effects. II

Statistical properties for patch potentials: 

Averaging the interaction energy over different 
realizations of the stochastic patches, we get

In the limit of large distances              , this expression has an asymptotic behavior 
independent of distance (self-energy of each plate). We remove the potential energy at 
infinite separation, to get the electrostatic interaction energy due to patch effects



Electrostatic Patch Effects. III

Different models to describe surface potential fluctuations:

 C1,k = C2,k = V 2
0 for kmin < k < kmax  

Sphere-plane geometry:

To compute the patch effect in the sphere-plane 
configuration we use PFA for the curvature effect                 
               but leave       arbitrary

(Speake and Trenkel, PRL 03).



Total Elec. Residual Force
We fit the data for the residual force at the minimizing potential with a 
force of electric origin, for distances               (negligible Casimir)d > 5µm

F0 = (−11± 2)× 10−12 N

V1 = (−34± 3) mV

Vrms = (6± 2) mV

χ2
0 = 1.5

F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d



Total Elec. Residual Force
We fit the data for the residual force at the minimizing potential with a 
force of electric origin, for distances               (negligible Casimir)d > 5µm

F0 = (−11± 2)× 10−12 N

V1 = (−34± 3) mV

Vrms = (6± 2) mV

χ2
0 = 1.5

F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

CASIMIR?



Casimir with Ge:  Theory

DD and Lamoreaux, PRL 101, 163203 (2008)
DD and Lamoreaux, J. Phys. 161, 012009 (2009)



 Casimir-Lifshitz pressure between two parallel plates:

Basic theory tools

P (d) = 2kBT
∞′∑

n=0

∫
d2k

(2π)2
√

k2 + ξ2
n/c2

∑

p=TE,TM

r1r2e
−2d
√

k2+ξ2
n/c2

1− r1r2e
−2d
√

k2+ξ2
n/c2

reflection amplitudesrj = rp
k,j(iξn)

ξn = 2πnkBT/! Matsubara frequencies

 Sphere-plane Casimir force is computed via PFA (well satisfied in the experiment)

E

A
= kBT

∑

p

∞′∑

n=0

∫
d2k

(2π)2
ln[1− r1r2e

−2d
√

k2+ξ2
n/c2 ]

 Casimir-Lifshitz free energy in the plane-plane geometry:

Fsp(d) = 2πRUpp(d) = 2πR
E

A



Material properties of Ge
• intrinsic semiconductor, among the purest materials available
• small density of free carriers (electrons and holes)

• conductivity, thermal, and optical properties are well tabulated

Bare permittivity of intrinsic Ge 
(not including contributions from free carriers)

ε(iξ) = ε∞ + ω2
0

ε0 − ε∞
ξ2 + ω2

0

Sellmeier-type form

Conductivity  properties of intrinsic Ge

n0(T ) =
√

ncnv e−
Eg

2kBTIntrinsic carrier density:

effect. density of states in conduction band
effect. density of states in valence band
energy band gap

nc(T )
nv(T )
Eg(T )

At T=300K:

Eg = 0.66 eV

nc = 1.04× 10−19 cm−3

nv = 6.0× 10−18 cm−3

Carrier relaxation time: τ ≈ 3.9 ps

Effective mass of conduction electrons: me = 0.12m

Effective mass of conduction holes: mh = 0.21m



Reflection Amplitudes. I

We need to compute the reflection amplitudes             for a vacuum-Ge 
interphase. Depending on the model used to describe the optical and 
conductivity properties of Ge we get different reflection amplitudes.

rp
k,j(ω)

 Ideal dielectric model: No contribution from free carriers. Only the bare permittivity 
is taken into account. Reflection amplitudes are the usual Fresnel coefficients.

rTM
k (iξ) =

√
k2 + ε(iξ)ξ2/c2 − ε(iξ)

√
k2 + ξ2/c2

√
k2 + ε(iξ)ξ2/c2 + ε(iξ)

√
k2 + ξ2/c2

rTE
k (iξ) =

√
k2 + ε(iξ)ξ2/c2 −

√
k2 + ξ2/c2

√
k2 + ε(iξ)ξ2/c2 +

√
k2 + ξ2/c2

 Ideal dielectric + Drude conductivity model: An ac Drude conductivity term 
is added to the bare permittivity.

ε(iξ) = ε(iξ) +
4πσ(iξ)

ξ

Same Fresnel coefficients with the substitution ε(iξ)→ ε(iξ)

σ(iξ) = σ0/(1 + ξτ)

rTM
k (ξ = 0) = 1

rTE
k (ξ = 0) = 0

σ0 = e2n0τ/me ≈ 1/(43 Ω cm)



Reflection Amplitudes. II
 Quasi-static screening model: (Pitaevskii, PRL 08) 

Takes into account the penetration of the static component of the fluctuating EM field into 
the material.  Based on Debye-Huckel charge screening.  Valid for small density of carriers. 
The relevant (longitudinal) Green function is expressed in terms of an auxiliary static 
potential field, that satisfies:

rTE
k (ξ = 0) = 0 rTM

k (ξ = 0) =
ε0q − k

ε0q + k
q =

√
k2 + κ2

κ2 = 4πe2n0/ε0kBT

Debye radius: (for metals is much smaller, 
on the order of interatomic distances)

RD = 1/κ ≈ 0.68µm

(All other reflections coefficients for         are fixed to the case of the ideal dielectric model)ξ != 0

 Charge-drift model: (DD and Lamoreaux, PRL 08) 

Takes into account the interaction between drifting carriers in the semiconductor and 
traveling EM waves. Based on the classical Boltzmann transport equation, and valid for non-
degenerate systems (small density of carriers) described by Maxwell-Boltzmann statistics.

(∇2 − κ2)ϕ = 0

 Effect of charge screening becomes important for distances d > RD



Charge-drift model. I

 Maxwell’s eqns.:

 Classical Boltzmann transport eqn.:

carrier current

mean thermal velocity

Mixing both, we get the fundamental equation for the EM field inside the semiconductor:

ωc = 4πen0µ/ε(ω)
µ = eτ/m

D = v2
T τ

mobility of carriers

diffusion constant

Note: In the quasi-static limit, we recover 
Pitaevskii’s screening results!

ωc/D = 4πe2n0/ε(ω)kBT
ω→0−→ 1/R2

D



Charge-drift model. II

Solving the EM boundary conditions on the vacuum-Ge interphase, we obtain the following 
TE and TM reflection amplitudes

same as in the ideal dielectric+Drude conductivity model.

Some limiting behavior:

• In the quasi-static limit           we recover Pitaevskii’s results, namelyξ → 0

rTE
k (0) = 0 (a static TE field is a purely magnetic field, fully penetrates a non-magnetic medium)

rTM
k (ξ = 0) =

ε0q − k

ε0q + k
(interpolates between a good conductor and an ideal dielectric)

• For           in the ideal dielectric limit (small free charge density and small thermal velocity), 
we recover Fresnel coefficients in terms of the bare permittivity  

ξ != 0
ε(ω)



Comparison of models

Given typical parameters for intrinsic semiconductors,                     and                        are 
very small in the relevant range of frequencies in the Lifshitz formula, and then only the           
TM mode is modified significantly.  Thus, to very high accuracy, the effect of drifting carriers 
can be fully modelled by the Debye-Huckel screening length.

ωc/(1 + ξτ) Dξ−1/(1 + ξτ)
n = 0

Fdielectric(d) < Fdrift(d) < FDrude(d)

(See also Klimchitskaya, arXiv:0902.4254)



Digression I: Nernst theorem 

Free energy: θ = 2πkBT/!

S(θ) = −2π

!
∂E

∂θ
Entropy:

S(T = 0) = kB ln ΩN
Nernst 
theorem:

We have shown that the charge drift 
model for intrinsic semiconductors 
verifies Nernst theorem with ΩN = 1

(Intravaia and Henkel, JPA 08)

n0(T ) ∝ e−1/T for T → 0

(DD and Lamoreaux, J. Phys. 09)



Digression II: Spatial Dispersion
 Pitaevskii’s quasi-static screening model can be cast in the form of 

spatial dispersion

static permittivity tensor

Computing the reflection coefficients for an anisotropic (uniaxial) material one recovers 
the static reflection amplitudes:

rTE
k (ξ = 0) = 0 rTM

k (ξ = 0) =
ε0q − k

ε0q + k

 Similarly, our charge drift model can also be cast in terms of spatial dispersion

(DD and Lamoreaux, J. Phys. 09)

(Sernelius, PRB 05; Esquivel-Sirvent et al, JPA 06)

Express reflection amplitudes          in terms of permittivity tensorrp
k(ω) ε(ω, k)

γ0 =
√

k2 + ξ2/c2

ηT =
√

k2 + ε⊥(k, iξ)ξ2/c2



Casimir with Ge:  Experiment

Kim, Sushkov, DD, Lamoreaux, PRL 103, 060401 (2009)



Casimir force residuals

Residual force at 
minima of parabolas



Casimir force residuals

CASIMIR?

Residual force at 
minima of parabolas



Casimir force residuals

CASIMIR?

After subtraction of the electrostatic force residual F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

Residual force at 
minima of parabolas



Casimir force residuals

CASIMIR?

After subtraction of the electrostatic force residual F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

χ2
0 ≈ 1

d < 5µmFor

for all the 
theoretical models 

Error bars:

3% statistical 
uncertainties

10% fitting 
uncertainties from 
electrostatic analysis

Residual force at 
minima of parabolas



Remarks on the Ge experiment

 After subtraction of these two electrostatic residuals, we got very good 
agreement with a Casimir force residual. However, we do not have enough 
accuracy to distinguish between the different theoretical models.

 Found a distance-dependent minimizing potential, due to large-scale variations 
in the contact potential along the surface of the plates.  It results in a relatively 
large residual force of electrostatic origin ∝ [Vm(d) + V1]2/d

 Found another residual force of electrostatic origin, probably due to 
potential patches on the surfaces that, for                    , isd! λ! R ∝ V 2

rms/d

 Further measurements deemed necessary to better understand the origins 
of the observed residual electrostatic force. For example, Kelvin probe 
measurements of the potential patches on the samples.



Casimir with Au: new experiment

Kim, Sushkov, DD, Lamoreaux, work in progress



We are performing a new experiment with Au samples in the sphere-plane 
configuration using the same torsional pendulum set-up

Ongoing Au experiment (Prelim)

R = 15.45 cm (slightly larger than the sphere for the Ge measurements)

β = (1.27± 0.04)× 10−7 N/V (slight difference with the Ge case attributable 
to different Au and Ge masses)

k(d) =
πε0R/β

d

Same calibration procedure as in the Ge experiment is followed: 

 Curvature parameter          : From the curvature of the electrostatic parabolas we 
obtain the force-voltage calibration constant and the absolute distance 

k(d)



Ongoing Au experiment (Prelim)

  Varying minimizing potential           :  Quite different behavior from the Ge case. Vm(d)

  Force residuals:  value of measured signal at the minima of each parabola



Ongoing Au experiment (Prelim)

We perform a fit of the force residuals to look for possible electrostatic 
potential patch effects 

F el
r (d) = F0 + πε0R

[Vm(d) + V1]2 + V 2
rms

d

Vm(d) ≈ −34 mV
V1 ≈ −Vm(d)

Vrms ≈ (7± 1) mV

and then subtract it from the force residuals.  We then get new force 
residuals (circles) that we compare against Casimir theory.

Plasma model

Drude model

F0 = (2.5± 0.4)× 10−11 N



Ongoing Au experiment (Prelim)
Theoretical modeling:

Sample dependence (beyond our accuracy)

Drude model: optical data extrapolated to 
zero frequency according to

Plasma model: optical data extrapolated to 
zero frequency according to

ε(ω) = 1−
ω2

p

ω(ω + iωτ )

ε(ω) = 1−
ω2

p

ω2

rTE
k (ξ = 0) = 0

rTM
k (ξ = 0) = 1

rTE
k (ξ = 0) =

k −
√

k2 + ω2
p/c2

k +
√

k2 + ω2
p/c2

rTM
k (ξ = 0) = 1



Ongoing Au experiment (Prelim)
Theoretical modeling:

Sample dependence (beyond our accuracy)

Drude model: optical data extrapolated to 
zero frequency according to

Plasma model: optical data extrapolated to 
zero frequency according to

ε(ω) = 1−
ω2

p

ω(ω + iωτ )

ε(ω) = 1−
ω2

p

ω2

rTE
k (ξ = 0) = 0

rTM
k (ξ = 0) = 1

rTE
k (ξ = 0) =

k −
√

k2 + ω2
p/c2

k +
√

k2 + ω2
p/c2

rTM
k (ξ = 0) = 1

Preliminary analysis 
suggests that Drude 

model is correct 
(better      than the 

plasma model)
χ2

0

Plasma model

Drude model



  Au measurements and preliminary analysis completed; suggests Drude model is 
correct. Further analysis with Kelvin probe microscopy would be extremely valuable.

Remarks on the Au experiment

  Lamoreaux’s 1997 Au torsion pendulum experiment was most likely contaminated 
by the varying minimizing potential (such systematic was not taken into account 
then). This made the Casimir force larger than expected based on the Drude model.

  The Drude model predicts a Casimir force weaker than the Plasma model. 
Corrections from incorrect        subtraction make the experimentally measured force 
larger than the Casimir force alone.

1/d
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FCas
pFCas

D
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e

Distance



  Au measurements and preliminary analysis completed; 
suggests Drude model is correct.

Remarks on the Au experiment

  Lamoreaux’s 1997 Au torsion pendulum experiment was most likely contaminated 
by the varying minimizing potential (such systematic was not taken into account 
then). This made the Casimir force larger than expected based on the Drude model.

  The Drude model predicts a Casimir force weaker than the Plasma model. 
Corrections from incorrect        subtraction make the experimentally measured force 
larger than the Casimir force alone.

1/d

Fr − F el
r

Fr

FCas
p

FCas
D

Fo
rc

e

Distance

Fr = F el
r + FCas

r + . . .
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See you in Santa Fe!

http://cnls.lanl.gov/casimir

http://cnls.lanl.gov/casimir
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